A Dielectric Waveguide Approach for Non-Destructive Extraction of the Complex Refractive Index

Ashish Kumar¹, Muhsin Ali², Guillermo Carpintero¹

uc3m

¹Universidad Carlos III De Madrid, Leganes 28915, Spain. ²LeapWave Technologies SL, Madrid, Spain.] Email: Akumar@ing.uc3m.es

Abstract:

We demonstrate a dielectric rod waveguide method for the determination of the complex refractive index of materials for the mm-wave range. This work presents an Evanescent field interaction for determining absorption loss, real refractive index, and extinction coefficient for polymer samples.

Motivation:

- Key applications for frequencies in the mm-wave & THz ranges: 5G, imaging, security [1].
- Critical need to characterize materials on those ranges [2].
- Drawbacks of traditional methods: Issues with thin & low loss materials, and dimensional precision demands [3],[4].
- Our Approach: Contactless sensing based on the evanescent fields in intrinsic silicon Dielectric Rod Waveguide (DRW). Overcomes limitations and enables measuring absorption, refractive index (n), and extinction coefficient (k) [5], [6].

Concept:

- A sample is positioned on top of a DRW (1mm width, 525µm thickness).
- •Evanescent fields extend from DRW, interacting with the sample.
- Interaction alters wave magnitude (absorption) and phase velocity.
- •Samples placed atop DRW for optimal coupling.

Demonstration:

- •Absorption loss from transmission magnitude; n & k from phase velocity shifts.
- •Materials: Cyclic Olefin Copolymer (COC), photoresins, ceramic-filled PTFE, Polylactic Acid (PLA).
- Frequency range: 54–64 GHz.

Results:

- Distinct absorption loss trends:
 - **■** COC: Lowest (<**2 dB**).
 - Photoresins: Highest (~8 dB near 62 GHz).
 - Ceramic-filled PTFE & PLA: (<**5 dB**).

-Cyclic olefin copolymer --Photoresins Ceramic-filled PTFE

54 Frequency (GHz)

---Polylactic acid

- Refractive index (n) & extinction coefficient (k):
- COC: $n \sim 1.7$, k < 0.02.
- Photoresins: $n \sim 1.9$, k > 0.08.
- Ceramic-filled PTFE: n ~2.1, k~**0.05**.
- PLA: $n \sim 1.83$, $k \sim 0.03$.

Conclusion

- DRW Evanescent field material interaction response is viable for obtaining the complex refractive index.
- Useful to avoid environmental factors in measurements.

Further work

- Increase Evanescent field-material interaction bandwidth.
- Try liquid samples.

References

- 1) W. Y. Yong et al., "An Overview of Recent Development of the Gap-Waveguide Technology for mmWave and Sub-THz Applications," IEEE Access, 2023.
- 2) M. N. Afsar et al., "The measurement of the properties of materials," Proc. IEEE, 1986.
- 3) P. Skocik and P. Neumann, "Measurement of Complex Permittivity in Free Space," Procedia Eng., 2015.
- 4) M. Naftaly et al., "Metrology State-of-the-Art and Challenges in Broadband Phase-Sensitive Terahertz Measurements," Proc. IEEE, 2017.
- 5) D. Headland et al., "Unclad Microphotonics for Terahertz Waveguides and Systems," J. Light. Technol., 2020.
- 6) M. Ali et al., "Dielectric Rod Waveguide-based Radio-Frequency interconnect operating from 55 GHz to 340 GHz," IRMMW-THz Conference, 2022.

Acknowledgements

This work was supported by national grant MiBiLab, reference PID2023-149035OB-I00, funded by MICIU/AEI/ 10.13039/501100011033 and by ERDF/UE. It has also been supported by the European Union (EU) through the Horizon Europe Framework Programme project by SPRINTER (Grant No: 101070581), **TERA6G** (Grant Agreement No 101096949) and **POLYNICES** (Grant Agreement 101070549).

